
CrossDoc
Team: Octo-Docs

Team Members
Garrison Smith
Peter Huettl
Kristopher Moore
Brian Saganey



Client/Mentor
● Dr. James Palmer 

○ Associate Professor at NAU - SICCS

● Dr. John Georgas
○ Associate Professor at NAU - SICCS

● Nakai McAddis
○ Lecturer at NAU

2



Problem 
Statement

3



The Problem
● Large companies with large projects

○ Culturally diverse developers
○ Language barrier

● Software and Documentation
○ Misunderstood documentation
○ Comments tightly coupled 

with the codebase

4



The Solution: CrossDoc
● Comments stored in external locations 

○ Easily accessible for all users
○ Editable in code or in comment store

● Scales alongside teams
○ Expands independently from code

● Breaks down cultural barriers
○ Easily store and reference

comments in different 
languages

5



Problem Visualized

● Documentation is 
buried and coupled 
with the codebase

● Disorganized 
comments with 
jumbled information

6



Solution Visualized

● Provide a better 
commenting method 
with CrossDoc

● Scalable, external 
storage, and enhanced 
functionalities

7



8

CrossDoc Key 
Requirements

● Simple setup process

● External comment storage

● Intuitive comment editing

● Functional text-editor plugins 
○ Atom
○ Emacs
○ Sublime
○ Vim



Architecture and 
Implementation

9



High Level Overview
● MVC Architecture

○ Model: CrossDoc Repository
○ View: Text Editor Plugin Content
○ Controller: Command Line Program

● Frameworks/Tools
○ Python setuptools
○ Text editor APIs
○ MediaWiki API

10



Command Line Program
● Provides API to interact with tool
● Text editor agnostic
● Implements core functionality

○ Create comments
○ Read comments
○ Delete comments
○ Etc..

11



Command Line Program
● Parser

○ Reads input
○ Delegates to commands

● Commands
○ Implements CrossDoc functionality

● Logger
○ Provides concise output
○ Outputs help text where necessary

12



Text Editor Plugins
● CrossDoc user interface
● Intuitive commands and hotkeys
● Support for multiple text editors

○ Atom
○ Emacs
○ Sublime
○ Vim

13



CrossDoc Repository
● Identified by a custom config 

file (cdoc-config.json)

● Stores references to 
comment stores

● Persistent meta-
data storage

14



Comment Storage
● Comment stores

○ Directory of anchors
○ Local and remote

● CrossDoc anchors
○ Comment identifier

● Comment sets
○ Distinct categories
○ Stores comment text

15



Prototype
Review

16



External Comment Storage

17



Text Editor Plugins

18

Atom

Sublime Vim

Emacs



Comment Categories

19



Development
Challenges

20



● Consistent functionalities across editors
○ Managing limitations of text editor APIs
○ Developing a consistent user experience

● Managing multiple storage platforms
○ Remote and local storage
○ Internal platform validation

● Decoupling comments from version control
○ Removing redundancy from commits
○ Encapsulation of comment text

Development Challenges

21



Development Solutions
● Consistent functionalities across editors

○ Provided unified API through command line program
○ Integrated commands directly into each editor’s command API

● Managing multiple storage platforms
○ Implementation of Wiki storage
○ Seamless integration with command line tool

● Decoupling comments from version control
○ Git Hooks (pre and post commit)

22



Development 
Schedule

23



24

Gantt Chart

Completed
In Progress Now



Schedule Milestones
Command-Line Program Text-Editor Plugins Remote Storage Git-Hooks

25



System Tests
● Unit Testing

○ 124 Equivalence Partitions
○ Command Coverage: 100%
○ Branch Coverage: 100%
○ Python’s unittest library

● Integration Testing
○ Ensure functionality of the Text Editor 

Plugins to Command Line Program chain
○ Atom, Emacs, Sublime, and Vim will utilize 

testing classes in the CL Program

26



Usability Tests
● Group A: Software Developers

○ Main goal: Devs find it easy to create, push, and pull comments with CrossDoc
○ Should also feel like normal commenting with our extended systems

● Group B: Technical Writers
○ Main goal: Non-programmers able to modify comment-base from Wiki location
○ Testing the consistency of remote stores and ease-of-use for writers

27



● Further optimize command 
line program performance

● Integrate with comment formats 
such as Doxygen and Javadoc

● Mechanism that flags 
out-of-date documentation

Future Work

28



Summary

29



30

Problem & Solution Summary

Without CrossDoc With CrossDoc



In Conclusion

● Design
○ MVC style architecture
○ Modular components

● Implementation
○ Robust command tool
○ Text editor plugins

● Impact
○ Decouple comments/code
○ Remote comment editing
○ Comment categories

31



Questions/Comments
Poster Presentation 2-4pm

Walkup Skydome


