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Problem 
Statement
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The Problem
● Large companies with large projects

○ Culturally diverse developers
○ Language barrier

● Software and Documentation
○ Misunderstood documentation
○ Comments tightly coupled 

with the codebase
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The Solution: CrossDoc
● Comments stored in external locations 

○ Easily accessible for all users
○ Editable in code or in comment store

● Scales alongside teams
○ Expands independently from code

● Breaks down cultural barriers
○ Easily store and reference

comments in different 
languages
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Problem Visualized

● Documentation is 
buried and coupled 
with the codebase

● Disorganized 
comments with 
jumbled information
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Solution Visualized

● Provide a better 
commenting method 
with CrossDoc

● Scalable, external 
storage, and enhanced 
functionalities
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CrossDoc Key 
Requirements

● Simple setup process

● External comment storage

● Intuitive comment editing

● Functional text-editor plugins 
○ Atom
○ Emacs
○ Sublime
○ Vim



Architecture and 
Implementation
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High Level Overview
● MVC Architecture

○ Model: CrossDoc Repository
○ View: Text Editor Plugin Content
○ Controller: Command Line Program

● Frameworks/Tools
○ Python setuptools
○ Text editor APIs
○ MediaWiki API
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Command Line Program
● Provides API to interact with tool
● Text editor agnostic
● Implements core functionality

○ Create comments
○ Read comments
○ Delete comments
○ Etc..
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Command Line Program
● Parser

○ Reads input
○ Delegates to commands

● Commands
○ Implements CrossDoc functionality

● Logger
○ Provides concise output
○ Outputs help text where necessary
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Text Editor Plugins
● CrossDoc user interface
● Intuitive commands and hotkeys
● Support for multiple text editors

○ Atom
○ Emacs
○ Sublime
○ Vim
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CrossDoc Repository
● Identified by a custom config 

file (cdoc-config.json)

● Stores references to 
comment stores

● Persistent meta-
data storage
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Comment Storage
● Comment stores

○ Directory of anchors
○ Local and remote

● CrossDoc anchors
○ Comment identifier

● Comment sets
○ Distinct categories
○ Stores comment text
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Prototype
Review
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External Comment Storage
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Text Editor Plugins
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Atom

Sublime Vim

Emacs



Comment Categories
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Development
Challenges
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● Consistent functionalities across editors
○ Managing limitations of text editor APIs
○ Developing a consistent user experience

● Managing multiple storage platforms
○ Remote and local storage
○ Internal platform validation

● Decoupling comments from version control
○ Removing redundancy from commits
○ Encapsulation of comment text

Development Challenges
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Development Solutions
● Consistent functionalities across editors

○ Provided unified API through command line program
○ Integrated commands directly into each editor’s command API

● Managing multiple storage platforms
○ Implementation of Wiki storage
○ Seamless integration with command line tool

● Decoupling comments from version control
○ Git Hooks (pre and post commit)
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Development 
Schedule
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Gantt Chart

Completed
In Progress Now



Schedule Milestones
Command-Line Program Text-Editor Plugins Remote Storage Git-Hooks
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System Tests
● Unit Testing

○ 124 Equivalence Partitions
○ Command Coverage: 100%
○ Branch Coverage: 100%
○ Python’s unittest library

● Integration Testing
○ Ensure functionality of the Text Editor 

Plugins to Command Line Program chain
○ Atom, Emacs, Sublime, and Vim will utilize 

testing classes in the CL Program
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Usability Tests
● Group A: Software Developers

○ Main goal: Devs find it easy to create, push, and pull comments with CrossDoc
○ Should also feel like normal commenting with our extended systems

● Group B: Technical Writers
○ Main goal: Non-programmers able to modify comment-base from Wiki location
○ Testing the consistency of remote stores and ease-of-use for writers
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● Further optimize command 
line program performance

● Integrate with comment formats 
such as Doxygen and Javadoc

● Mechanism that flags 
out-of-date documentation

Future Work

28



Summary
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Problem & Solution Summary

Without CrossDoc With CrossDoc



In Conclusion

● Design
○ MVC style architecture
○ Modular components

● Implementation
○ Robust command tool
○ Text editor plugins

● Impact
○ Decouple comments/code
○ Remote comment editing
○ Comment categories

31



Questions/Comments
Poster Presentation 2-4pm

Walkup Skydome


